Чем отличаются диэлектрики от проводников?

Проводники и диэлектрики в электрическом поле

Чем отличаются диэлектрики от проводников?

Внесение некоторого вещества в электрическое поле может привести к существенному его изменению; это обусловлено тем, что вещество составляют заряженные частицы.

Если внешнее поле отсутствует, распределение частиц вещества происходит таким образом, что электрическое поле, которое они создают, в среднем по объемам, включающим большое число атомов или молекул, равно нулю. Если внешнее поле присутствует, заряженные частицы перераспределяются, и в веществе возникает собственное электрическое поле.

Полное электрическое поле E→ включает в себя (согласно принципу суперпозиции) внешнее поле E0→ и внутреннее поле E'→ которое создается заряженными частицами вещества.

Электрические свойства веществ обуславливают их многообразие. Самые широкие классы веществ – это проводники и диэлектрики.

Проводники

Отличительная черта проводников заключается в наличии свободных зарядов (электронов), принимающих участие в тепловом движении и способных осуществлять перемещение по всему объему проводника. Типичным примером проводников служат металлы.

Определение 1

Если внешнее поле отсутствует, то в любом элементе объема проводника отрицательный свободный заряд будет компенсироваться положительным зарядом ионной решетки.

В проводнике, который внесен в электрическое поле, произойдет перераспределение свободных зарядов, следствием чего будет возникновение на поверхности проводника нескомпенсированных положительных и отрицательных зарядов (рис. 1.5.1).

Описанный процесс носит название электростатической индукции, а возникающие на поверхности проводника заряды называют индукционными зарядами.

Индукционными зарядами создается свое собственное поле E'→ и оно компенсирует внешнее поле E0→ во всем объеме проводника: E→=E0→+E'→=0 (внутри проводника).

Определение 2

Полное электростатическое поле внутри проводника есть нуль, а потенциалы во всех точках являются одинаковыми и равными потенциалу на поверхности проводника.

Рисунок 1.5.1. Электростатическая индукция.

Все внутренние области проводника, который внесен в электрическое поле, остаются электронейтральными.

Удаление некоторого объема, выделенного внутри проводника, а соответственно образование пустой полости, приведет к тому, что электрическое поле внутри полости станет равным нулю.

На этом основана электростатическая защита – приборы, имеющие чувствительность к электрическому полю в целях исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1.5.2. Схема электростатической защиты. Поле в металлической полости равно нулю.

Поскольку поверхность проводника эквипотенциальна, необходимо, чтобы силовые линии у поверхности являлись перпендикуляром к ней.

Диэлектрики

Диэлектрики (изоляторы) отличаются от проводников тем, что не имеют свободных электрических зарядов. Диэлектрики включают в себя нейтральные атомы или молекулы. Заряженные частицы в нейтральном атоме являются связанными друг с другом и не имеют способности к перемещению под действием электрического поля по всему объему диэлектрика.

Внесение диэлектрика во внешнее электрическое поле E0→ вызовет возникновение в нем некоторого перераспределения зарядов, которые входят в состав атомов или молекул.

Следствием этого перераспределения является появление на поверхности диэлектрического образца избыточных нескомпенсированных связанных зарядов.

Все заряженные частицы, которые образуют макроскопические связанные заряды, все так же входят в состав своих атомов.

Определение 3

Связанные заряды образуют электрическое поле E'→ направленное внутри диэлектрика противоположно вектору напряженности E0→ внешнего поля: данный процесс носит название поляризации диэлектрика.

Вследствие поляризации полное электрическое поле E→=E0→+E'→=0 внутри диэлектрика становится по модулю меньше внешнего поля E0→.

Определение 4

Диэлектрическая проницаемость вещества – это физическая величина, которая есть отношение модуля напряженности E0→ внешнего электрического поля, создаваемого в вакууме, к модулю напряженности E→ полного поля в однородном диэлектрике.

ε=E0E.

Известно несколько механизмов поляризации диэлектриков: основные – это ориентационная и электроннаяполяризации. Проявление этих механизмов происходит в основном при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация появляется, когда полярные диэлектрики состоят из молекул, у которых имеет место несовпадение центов распределения положительных и отрицательных зарядов. Такие молекулы представляют собой микроскопические электрические диполи.

Определение 5

Микроскопические электрические диполи – это нейтральная совокупность двух зарядов, являющихся равными по модулю и противоположными по знаку, расположенных на расстоянии друг от друга.

К примеру, дипольный момент имеет молекула воды, а также молекулы некоторых прочих диэлектриков (H2S, NO2 и т. д.).

Когда внешнее электрическое поле отсутствует, оси молекулярных диполей по причине теплового движения имеют хаотичную ориентацию, в связи с чем на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем является равным нулю.

Если внести диэлектрик во внешнее поле E0→, возникнет частичная ориентация молекулярных диполей. Вследствие этого поверхность диэлектрика получит нескомпенсированные макроскопические связанные заряды, создающие поле E'→ направленное навстречу внешнему полю E0→ (рис. 1.5.3).

Рисунок 1.5.3. Ориентационный механизм поляризации полярного диэлектрика.

Поляризация полярных диэлектриков обладает сильной зависимостью от температуры, поскольку тепловое движение молекул выступает в качестве дезориентирующего фактора.

Электронный или упругий механизм возникает при поляризации неполярных диэлектриков, молекулы которых не имеют при отсутствии внешнего поля дипольного момента.

Электрическое поле, воздействуя на молекулы неполярных диэлектриков, вызывает их деформацию – положительные заряды смещаются в направлении вектора E0→ а отрицательные – в противоположном направлении. В итоге каждая молекула становится электрическим диполем, ось которого имеет направление вдоль внешнего поля.

Поверхность диэлектрика получает нескомпенсированные связанные заряды, которые создают свое поле E'→ имеющее направление навстречу внешнему полю E0→ Таким образом происходит поляризация неполярного диэлектрика (рис. 1.5.4).

Деформация неполярных молекул, испытывающих влияние внешнего электрического поля, не имеет зависимости от теплового движения, т.е. поляризация неполярного диэлектрика не зависит от температуры.

Пример 1

В качестве примера неполярной молекулы можно рассмотреть молекулу метана CH4, в которой четырехкратно ионизированный ион углерода C4– расположен в центре правильной пирамиды; в вершинах этой пирамиды – ионы водорода H+. Наложение внешнего электрического поля вызовет смещение иона углерода из центра пирамиды: в этом случае у молекулы возникнет дипольный момент, пропорциональный внешнему полю.

Рисунок 1.5.4. Поляризация неполярного диэлектрика.

В электрическом поле E'→ связанных зарядов, которое возникает при поляризации полярных и неполярных диэлектриков, происходит его изменение по модулю прямо пропорционально модулю внешнего поля E0→.

В электрических полях значительной силы указанная закономерность может нарушаться: в таком случае получают проявление различные нелинейные эффекты.

Для полярных диэлектриков в сильных полях возможно наблюдать эффект насыщения.

Определение 6

Эффект насыщения – это выстраивание всех молекулярных диполей вдоль силовых линий.

Когда диэлектрики неполярны, сильное внешнее поле, которое можно сравнить по модулю с внутриатомным полем, имеет возможность значимо деформировать атомы или молекулы вещества с изменением их электрических свойств. Но подобные явления почти никогда не наблюдаются, поскольку для этого необходимы поля, имеющие напряженность порядка 1010–1012 В/м. При этом гораздо раньше наступает электрический пробой диэлектрика.

Определение 7

Электронная поляризация – это процесс поляризации, при котором непарные молекулы получают деформацию электронных оболочек.

Этот механизм универсален, так как деформация электронных оболочек под влиянием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

Определение 8

Ионная поляризация – это поляризация твердых кристаллических диэлектриков, следствием которой является смещение ионов различных знаков, составляющих кристаллическую решетку, в противоположных направлениях при воздействии внешнего поля. В результате смещения на гранях кристалла образуются связанные (нескомпенсированные) заряды.

Пример 2

В качестве примера описанного механизма, можно рассмотреть поляризацию кристалла NaCl, в котором ионы Na+ и Cl– составляют две подрешетки, вложенные друг в друга.

При отсутствии внешнего поля каждая элементарная ячейка кристалла NaCl является электронейтральной и не обладающей дипольным моментом. Во внешнем электрическом поле обе подрешетки сместятся в противоположных направлениях, т.

е. кристалл подвергнется процессу поляризации.

Когда происходит процесс поляризации неоднородного диэлектрика, связанные заряды могут появиться не только на поверхности, но и в объеме диэлектрика.

В таком случае электрическое поле E'→ связанных зарядов и полное поле E→ будут обладать сложной структурой, зависящей от геометрии диэлектрика.

Утверждение о том, что электрическое поле _formula_ в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем E→ точно верно лишь, когда речь идет об однородном диэлектрике, который заполняет все пространство, где создано внешнее поле. В частности:

Определение 9

В случае, когда в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q, напряженность электрического поля E→ этого точечного заряда и потенциал φ в ε раз меньше, чем в вакууме. Запишем данное утверждение в виде формул:

E→=14πε0·Qεr3r→, φ=14πε0Qεr.

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/provodniki-i-dielektriki-v-elektricheskom-pole/

Проводники и диэлектрики

Чем отличаются диэлектрики от проводников?

Все существующие природные вещества по степени электропроводности условно разделяют на три группы: проводники электрического тока, диэлектрические и полупроводниковые материалы.

Разделение материалов по электропроводности

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Важно! При повышении влажности диэлектрики могут лишиться непроводящих способностей.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности. В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости.

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Обратите внимание! Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы.

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Свойства проводников

Основными характеристиками проводников электричества являются:

  1. сопротивление,
  2. электропроводность.

При движении электронов по проводящему веществу происходят их столкновения с ионами и атомами. Это приводит к возникновению сопротивления.

Если между двумя проводниками создать разность потенциалов, то через третий, их соединяющий, потечет электрический ток. Направление его движения будет от большего потенциала к меньшему. В этом случае носителями будут электроны, не связанные между собой, которые определяют значение электропроводимости вещества.

Электропроводность – возможность материала пропускать электрический ток. Этот показатель обратно пропорционален сопротивлению материала, измеряется в сименсах, См.

В зависимости от носителей заряда, электропроводность может быть:

  • электронной,
  • ионной,
  • дырочной.

Проводник с электронной проводимостью

Обратите внимание! Надежный проводник характеризуется малым сопротивлением потоку движущихся электронов и, соответственно, высокой электропроводностью. Наибольшая проводимость – свойство наилучшего проводника.

Выбор проводящих материалов должен осуществляться в соответствии с их свойствами:

  • Электрическими (удельное сопротивление и температурный коэффициент сопротивления);
  • Физическими (градус плавления, плотность);
  • Механическими (устойчивость к растяжению, изгибанию, возможность обработки на станках);
  • Химическими (взаимодействие с окружающей средой, возможность соединения при сварке, пайке).

Малым удельным сопротивлением обладают металлы без примесей. У сплавов этот показатель увеличивается. Сопротивление возрастает и с повышением температуры.

Важно! При охлаждении до критических значений сопротивление большинства токопроводящих веществ падает до нуля. Это свойство носит название сверхпроводимости.

При выборе проводников для электроустановок, линий питания, защитного заземления и других сфер применения важно учитывать все качества материалов.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Распределение переменного тока по сечению Что такое электрическое сопротивление

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление.

Формула определения длины проводника

Сопротивление тока: формула

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой.

Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки.

Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

L = R / r*s,

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Виды проводников

Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.

Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.

Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.

Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.

Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.

В электрическом поле низкой напряженности любой газ и пар не проводят ток.

Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью.

Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  1. Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  2. Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  3. Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  4. Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Обратите внимание! При достижении температурой нулевой отметки полупроводник ведет себя как изолятор.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Источник: https://amperof.ru/teoriya/provodniki-i-dielektriki.html

Чем отличаются диэлектрики от проводников?

Чем отличаются диэлектрики от проводников?

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны.

При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд.

Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

  1. Проводники.
  2. Диэлектрики.
  3. Полупроводники.

Таблица: чем отличаются проводники и диэлектрики?

ПроводникДиэлектрик
Наличие свободных электроновПрисутствуют в большом количествеОтсутствуют, или присутствуют, но очень мало
Способность материалов проводить электрический токХорошо проводитНе проводит, или ток незначительно мал
Что происходит при увеличении приложенного напряжениеТок, проходящий через проводник, увеличивается согласно закону ОмаТок, проходящий через диэлектрик изменяется незначительно и, при достижения определенного значения, происходит электрический пробой
МатериалыЗолото, серебро, медь и ее сплавы, алюминий и сплавы, железо и другиеЭбонит, фторопласт, резина, слюда, различные пластмассы, полиэтилен и другие материалы
Сопротивлениеот 10-5 до 10-8 степени Ом/м1010 – 1016 Ом/м
Влияние посторонних примесей на сопротивление материалаПримеси ухудшают свойство проводимости материала, что ухудшает его свойстваПримеси улучшают проводимость материала, что ухудшает его свойства
Изменение свойств при изменении температуры окружающей средыПри увеличении температуры – сопротивление увеличивается, при снижении – уменьшается. При очень низких температурах – сверхпроводимость.При увеличении температуры – сопротивление уменьшается.

Источник: https://vchemraznica.ru/chem-otlichayutsya-dielektriki-ot-provodnikov/

Что такое проводник, полупроводник и диэлектрик согласно Зонной теории

Чем отличаются диэлектрики от проводников?

В электроэнергетике можно выделить три главные группы материалов: проводник, полупроводник и диэлектрик. Основное их отличие в том, что у них различная проводимость электрического тока. В этой статье поговорим о различии таких материалов и их поведении в электрическом поле.

Что такое проводник

Итак, проводник это – материал (вещество, среда), отлично проводящий электрический ток. Присутствующие в веществе так называемые свободные заряженные частицы (электроны или ионы), способны свободно перемещаться по всему объему вещества, а при приложении электрического напряжения создают ток проводимости.

Главной характеристикой проводника является его «сопротивление» (R), измеряемое в Омах или же обратная величина под названием «проводимость», находится по формуле:

G = 1/R

И измеряется данная величина в Сименс.

К проводникам относится: большая часть металлов, углерод (уголь либо графит), разнообразные растворы солей и кислот.

Проводники, у которых перенос заряда выполняется преимущественно за счет движения электронов (электронная эмиссия), называются проводниками первого рода. Если в проводниках перемещение заряда выполняется за счет ионов (электролиты), то они называются проводниками второго порядка.

Наибольшее распространение получили металлы, так как они обладают самой лучшей проводимостью, а значит, имеют меньшее сопротивление протекающему электрическому току.

Так, например, жилы всех питающих проводов (шнуров) выполнены из металлов, являющихся проводниками.

Что такое диэлектрик

Диэлектриками называют те вещества, которые обладают большим сопротивлением и не пропускают электрический ток либо проводят его в незначительных количествах.

Это обусловлено тем, что в подобных материалах крайне мало находится свободных носителей заряда по причине довольно крепкой атомарной связи. Поэтому при воздействии электрического поля ток в диэлектрике просто отсутствует.

К диэлектрикам относятся такие материалы как: стекло, фарфор, керамика, текстолит, карболит, вода дистиллированная (без солевых примесей), сухое дерево, каучук и т.п.

Диэлектрики так же крайне широко используются в быту. Изоляция проводов, корпуса электроприборов выполнены из диэлектрических материалов.
yandex.ru

Но если создать определенные условия, например, сильно повысить рабочее напряжение, то диэлектрик может стать проводником. Наверняка вы слышали такое выражение как «пробой изоляции».

Главной характеристикой любого диэлектрика считается электрическая прочность (данная величина равна напряжению пробоя).

Что такое полупроводник

Как видно даже из самого названия полупроводники занимают промежуточное положение между проводниками и диэлектриками. Полупроводники в изначальном состоянии не пропускают электрический ток, но стоит приложить к полупроводниковому материалу энергию, то полупроводник из диэлектрика превращается в проводник.

Подобные элементы применяются в радиоэлектронике, из них производят транзисторы, тиристоры, диоды, светодиоды и т. д.

Разграничение веществ на проводники, полупроводники и диэлектрики объясняются с помощью Зонной теории твердых тел. Она, конечно, не всеми принимается просто, но познакомиться с ней крайне желательно.

Зонная теория твердых тел

Итак, различие между диэлектриками, проводниками и полупроводниками можно объяснить зонной теорией. Она звучит так:

Как известно из модели атома Бора в атоме электроны размещены на определенных орбитах

yandex.ru

В кристаллической решетке твердого тела орбиты электронов изменяются под неизбежным влиянием соседних атомов и электронов. И по этой причине происходит смещение энергетических уровней удержания электронов.

С орбит близких к ядру атома электроны могут перейти на другой уровень чисто теоретически, а вот уже с внешних орбит, которые в твердом теле размываются на подуровни, переход электронов между ними может осуществляться довольно легко.

А при приложении электрического потенциала электроны, хаотично перескакивающие по внешним орбитам соседствующих атомов, обретают единый вектор движения и мы наблюдаем электрический ток.

Поэтому нижний слой, где имеются свободно перемещающиеся электроны, называют зоной проводимости.

Валентной зоной называется область разрешенных энергий и располагается она под зоной проводимости.

Для того, чтобы электрон перешел из валентной зоны в зону проводимости, он должен пересечь так называемую запрещенную зону.

Численно она выражается в электрон–вольтах. А энергетические уровни полупроводников, проводников и диэлектриков схематично можно представить следующим образом:

Как видно из рисунка выше у проводника нет запрещенной зоны, то есть валентная зона и зона проводимости имеет область перекрытия. Это значит, что в таком материале даже при незначительном приложении энергии электроны начинают активно перемещаться в пределах тела проводника.

У полупроводника между уровнями присутствует запрещенная зона. Ее ширина показывает, какую энергию нужно приложить к полупроводнику, чтобы электроны начали свое перемещение, то есть стал протекать ток.

А у диэлектрика запрещенная область настолько широка, что переход электронов из валентной области в проводимую практически исключен. Так как потребуется значительная энергия для преодоления этого барьера, которая вызовет разрушение диэлектрика.

Заключение

Это все, что я хотел вам рассказать о диэлектриках, проводниках и полупроводниках. Если вам статья оказалась интересна и полезна, то оцените ее. И спасибо за ваше внимание!

Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5c11422a220e2000ab355e80

Что такое проводники, полупроводники и диэлектрики

Чем отличаются диэлектрики от проводников?
В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.