Разница между источником тока и источником напряжения

Разница между источником тока и источником напряжения

Разница между источником тока и источником напряжения

Трудно представить современный мир без электричества, телефон останется без подзарядки, а просмотр фильма попросту станет невозможен. Да, без этого явления жизнь покажется тяжелой.

Но для того чтобы получить его, нужен поток энергии, физическая составляющая которого, может иметь различный характер. В электротехнике принято подразделять элементы питания на две группы: по постоянному току или напряжению.

Они бывают идеальными, но существующие лишь в теории и реальные, которые возможно увидеть на практике.

Идеальный источник тока (генератор)

Для начала рассмотрим абстрактный вариант: сила тока, созданная в этом устройстве, всегда одинаковая. Опираясь на закон Ома, можно легко сделать заключение, что напряжение находится в зависимости лишь от сопротивления подключенной нагрузки.

Внутреннее сопротивление такого элемента питания имеет бесконечную величину, поэтому не воздействует на основной параметр. Вследствие того, что сила тока значение постоянное, то на значение мощности теоретического агрегата влияет только сопротивление подключенной нагрузки.

В устройстве, при возникновении короткого замыкания, также сохраняется основное свойство источника.

Такой идеальный элемент можно создать лишь в теории, его применяют при моделировании электромагнитных процессов. На практике такой системы достичь невозможно, поэтому рассмотрим материальную вариацию.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту.

Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке.

При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором.

Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток).

При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Идеальный источник напряжения (ЭДС)

У идеального устройства, напряжение является неизменным параметром и не зависит от значения нагрузочного тока, вместе с тем, его внутреннее сопротивление равно 0.

Если создание данного прибора было бы возможным, то он представлял источник бесконечной мощности. Величина тока и мощности при подключенной нагрузке стремилась к бесконечному числу.

Но, как мы знаем мощность, имеет конечное значение.

Описанный элемент питания, является теоретическим понятием, на практике таких условий достичь невозможно, поэтому применяется лишь в моделировании процессов.

Реальный источник напряжения

В реальности имеем устройство ЭДС, которое характеризуется наличием внутреннего сопротивления, по этой причине ток будет иметь граничное значение.

В большинстве устройств внутреннее сопротивление незначительная величина, если сравнивать с внешними показателями, и чем меньше это параметр, тем ближе к идеальному варианту. При увеличении тока будет происходить падение напряжения. В расчетах обозначается как идеальный источник ЭДС с подключенным последовательно сопротивлением.

Ток через источник равен 0, если создан режим холостого хода. При возникновении короткого замыкания, примет максимальное значение, а разность потенциалов на выходе станет равной 0.

В качестве примера можно рассмотреть аккумуляторную батарею, принцип работы которой, основан на химической реакции.

Вывод

  • Реальные приборы в отличие от идеальных устройств содержат внутреннее сопротивление.
  • Что касается отличия идеального устройства тока от напряжения, то оно заключается в том, какой параметр является постоянным и не зависит от присоединяемой нагрузки. Это соответствует их названиям, для приборов ЭДС– напряжение, для генератора – ток.
  • При составлении схемы замещения, внутреннее сопротивление источника тока подключается параллельно, напряжения – последовательно.
  • Для реальных устройств, существует разница во внутреннем сопротивлении: для генераторов лучше иметь большое сопротивление, для источника ЭДС – малое.

Источник: https://vchemraznica.ru/raznica-mezhdu-istochnikom-toka-i-istochnikom-napryazheniya/

Какие существуют виды источников электрического тока?

Разница между источником тока и источником напряжения

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах.

Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество.

Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников – термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному.

Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока.

Металлические термопары используют лишь для измерения температуры.

СПРАВКА! Чтобы получить термопару, необходимо соединить 2 различных металла.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор.

В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой.

Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока.

Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту.

Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе “сухие”, батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи – гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития – щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Источник: https://odinelectric.ru/elektrosnabzhenie/vidy-istochnikov-electricheskogo-toka

Переменное напряжение тока — что это?

Разница между источником тока и источником напряжения

Напряжение – это физическая величина, характеризующая работу эффективного электрического поля, совершающего перенос заряда из одной точки проводника в другую.

Оно есть везде, где есть токовая сила и пропорционально зависит от него, как и сопротивление. Каждый знает, что в его домашней розетке 220 В, но мало кто догадывается, какой именно это вид величины.

Стоит подробнее разобраться с постоянным и переменным напряжением, в чем их различия, и какие виды переменного напряжения существуют.

Напряжение переменного тока

Как известно еще с уроков физики, ток – это движение заряженных частиц, которое возникает под воздействием на них электромагнитного поля, разности потенциалов и напряженности.

Основная характеристика любого напряжения – это зависимость от времени. Исходя из этого, различают постоянную и переменную величины.

Значение постоянного с течением времени практически не изменяется, а переменного – изменяется.

Закон Ома

В свою очередь переменная характеристика бывает периодической и непериодической. Периодическое – это напряжение, значения которого повторяются через одинаковые интервалы времени. Непериодическое же способно изменяться в любой отрезок времени.

Схема описания физического смысла

Напряженность в переменной цепи – это такой параметр, который изменяет свою величину с течением времени. Для упрощения разъяснений в дальнейшем будет рассматриваться синусоидальное гармоническое переменное напряжение.

Минимальное время, в течение которого переменная величина повторяется, называется периодом. Абсолютно любую периодическую величину можно записать зависимостью от какой-либо функции. Если время – это t, то зависимость будет обозначаться F(t). Таким образом, любой период во времени имеет вид: F(t+-T) = F(t), где T – период.

Физическая величина, которая является обратной периоду, называется частотой. Она равна 1/T. Единицей ее измерения является герц, в то время как единицей измерения периода стала секунда.

f = 1/T, 1 Гц = 1/с = с в минус первой степени.

Формулы колебаний

Важно! Чаще всего встречается функциональная зависимость переменной сети в виде синусоиды. Именно поэтому она была взята за основу этого материала.

Из математики известно, что синусоида – это простейшая периодическая функция, и с ее помощью из нескольких синусоид с кратными частотами можно представить любые другие периодические функции.

Синусоидальная напряженность в абсолютно любой промежуток времени может описать моментальная характеристика: u = U * sin(ωt + φ), где ω = 2πf = 2π/T, где U – максимальное напряжение (амплитуда), ω – угловая скорость изменения, φ – начальная фаза, которая определяется смещением функции относительно нулевой точки координат.

Синусоидальная функция

Часть (ωt + φ) – это фаза, которая характеризует значение напряжения в конкретный промежуток времени. Из этого выходит, что амплитуда, угловая скорость и фаза – это основные характеристики переменных сетей, определяющие их значения в любой интервал времени.

Важно! При рассмотрении синусоидальной функции фазу часто принимают за ноль. На практике также часто прибегают к еще некоторым параметрам, включающим действующее и среднее напряжение, коэффициент формы.

Регулятор переменного напряжения

Отличие между переменным и постоянным напряжением

Разница между двумя этими величинами не только в названии. Все зависит от вида тока. В обычной розетке дома ток переменный. Это значит, что направление движения заряженных частиц в нем постоянно изменяется.

Более того, у переменных токовых сил разная частота и напряжение. Например, в розетке на 220 вольт обычная частота равна 50 Гц, что означает смену направления движения электронов и их зарядов 50 раз в секунду.

Напряжение в этом плане означает максимальную скорость, с которой движутся электроны по цепи.

Постоянная и переменная характеристики

Еще одно отличие изменчивого направления движения частиц и, как следствие, напряжения от постоянного, в том, что в нем постоянно изменяется заряд. Значение U в такой сети бывает равно то 100 %, то 0 %. Если оно всегда было полным, то потребовался бы провод очень большого диаметра.

Постоянное же направление – это ток, который не изменяет координаты своего движения. Его можно наблюдать в аккумуляторах и батареях. Попадает он туда через зарядное устройство, конвертирующее любой поток из розетки в постоянный.

Противофаза

Виды напряжения переменного тока

В случае наиболее распространенного синусоидального напряжения часто рассматривают его виды:

  • Мгновенное, которое определяется для произвольного момента времени t.
  • Действующее, производящее один и тот же тепловой эффект, равный по величине постоянной характеристики. Оно определяется выполненной активной работой первого полупериода.
  • Средневыпрямленное, определяемое как модуль величины выпрямленного напряжения за один цикл гармонического колебания.

Если электрический поток передается по воздушным линиям, то упоры и их размеры напрямую зависят от величины напряжения, которое применяется в сети. Его величина между фазами именуется линейным напряжением, а между землей и каждой из фаз – фазным.

Период и амплитуда синусоидального колебания

Двухфазный ток

Двухфазный ток – это когда идет передача сразу двух токов разного направления. Параметр напряженности для двухфазной сети сдвинут по фазе на угол в 90 градусов. Передается такой ток двумя проводниками: два фазных и два нулевых. Применяется в электрических сетях переменного тока.

Для этого используют два контура, значения которых сдвинуты по фазе на 90 градусов. В каждом контуре используется четыре линии – по две штуки на каждую из фаз. Иногда применяется и один провод с большим диаметром, чем у двух других.

Преимуществом двухфазный сетей был плавный запуск электродвигателей, но они были вытеснены трехфазными.

Двухфазный источник

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

График трехфазного сигнала

Виды источников переменного напряжения

Среди основных источников непостоянного напряжения можно выделить такие компоненты, как:

  • Электростанция;
  • Генератор непостоянного тока;
  • Промышленная и домашняя электросеть.

Главным источником непостоянных токовых сил и напряжения является электростанция или промышленная электросеть.

Использование такого тока обосновано тем, что его намного легче передавать на большие расстояния по проводникам и просто преобразовать в постоянный электрический ток.

Переменные параметры передаются со станции к трансформаторам, которые преобразуют напряжение непостоянного тока, не являясь его источниками. Генераторы вырабатывают такой ток путем преобразования механической энергии в электрическую.

Генератор переменной силы

Как можно измерить переменное напряжение

Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:

  • Найти шкалу измерения на приборе, которая чаще всего находится справа.
  • Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
  • Взять щупы и вставить их в источник. При этом неважно, какой щуп куда будет вставлен.
  • Произвести измерения с учетом техники безопасности.
  • Зафиксировать полученные показатели.

Однофазный двигатель

Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.

Источник: https://rusenergetics.ru/polezno-znat/peremennoe-napryazhenie

Источник тока

Разница между источником тока и источником напряжения

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей.

Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные.

До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 – 250 вольт, выдавая постоянное действующее значение тока на зажимы.

Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы.

Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения – инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи.

В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В.

У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону.

Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла.

Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа – 3 мм;
  • диаметр электрода – 3,2 мм;
  • рабочий ток процесса 100 – 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру.

Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно.

Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий.

Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока.

Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса.

Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии).

Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами.

По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору.

Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками.

Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается.

Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА.

Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом.

Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа.

Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения).

Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

Источник: https://VashTehnik.ru/enciklopediya/istochnik-toka.html

Источники напряжения – Основы электроники

Разница между источником тока и источником напряжения

Для того, что бы создать напряжение необходимо электроны, находящиеся на своих орбитах удалить с этих орбит. Следовательно, для этого необходимо приложить энергию, природа которой может быть самой различной.

Мы знаем, что энергия из пустоты не возникает, она просто переходит из одной формы в другую.
Источники напряжения – это устройства, преобразующее один из видов энергии в электрическую энергию.В мире существует шесть видов источников напряжения:1.

    Источники напряжения построенные на явлении электризации трением.2.    Источники напряжения основанные на явлении магнетизма.3.    Химические источники напряжения.4.    Источники напряжения, преобразующие световую энергию в электрическую.5.

    Источники напряжения, преобразующие тепловую энергию в электрическую.

6.    Пьезоэлектрические источники напряжения.

Источники напряжения построенные на явлении электризации трением (генератор Ван де Граафа)

Самым древним способом получения электричества является трение. Если взять стеклянную или эбонитовую палочку и потереть ее кусочком меха или шелка, то она зарядится. На этом самом принципе работает генератор Ван де Граафа (рис 3.1.).

Рисунок 3.1.Генератор Ван де Граафа.

Генератор Ван де Граафа способен вырабатывать напряжения величиной в миллионы вольт. Но, к сожалению, это устройство нигде, кроме как в научных исследованиях не используется, да еще в кабинетах физики.

Источники напряжения основанные на явлении магнетизма

На сегодняшний день в основном электрическую энергию получают методом, основанным на явлении магнетизма. Суть его состоит в том, что если проводник перемещать в магнитном поле, то на его концах будет появляться напряжение. Это напряжение будет возникать в течение времени перемещения проводника в магнитном поле.  На этом принципе построено устройство, называемое генератором (рис. 3.2).

Рисунок 3.2.Генератор постоянного напряжения.

Бывают генераторы постоянного напряжения и генераторы переменного напряжения. Если поток электронов постоянно движется в одном направлении, то ток, создаваемый этим потоком, называется постоянным.

Если поток электронов периодически меняет свое направление на противоположное, то в этом случае ток называется переменным. Генератор напряжения может приводиться в движение различными двигателями, ветром, водой, даже нагретым паром.

Общее условно-графическое обозначение генератора переменного тока можно посмотреть на рис. 3.3.

Рисунок 3.3.Условно-графическое обозначение а) генератора переменного напряжения; б) генератора постоянного напряжения.

Химические источники напряжения

Следующим по значимости методом получения электрической энергии является применение химических батарей. Составной частью батарей являются два электрода, изготовленные из разнородных металлов (к примеру меди и цинка) и погруженные в электролит (раствор кислоты, щелочи или соли). Они создают контакт между цепью и электролитом.

Из медного электрода с помощью электролита извлекаются свободные электроны, а цинковый электрод эти электроны притягивает. Таким образом, медный электрод имеет положительный заряд, а цинковый отрицательный. Несколько таких элементов, соединяясь вместе, образуют батарею.

Некоторые образцы химических источников напряжения представлены на рисунке 3.4.

Рисунок 3.4. Химические источники напряжения

На рисунке 3.5 показаны условно-графические обозначения химического элемента и батареи химических элементов.

Рисунок 3.5.УГО а)химического элемента; б) батерии.

Источники напряжения, преобразующие световую энергию в электрическую

В электрическую энергию может быть преобразована и световая энергия, путем попадания света на фоточувствительную пленку в солнечном элементе. В основе солнечных элементов лежит использование фоточувствительной пленки, изготовленной из полупроводников.

При освещении фоточувствительной пленки светом, происходит выбивание электронов со своих орбит. Тем самым образуются область отрицательно заряженных свободных  электронов и область положительно заряженных дырок на соответствующих электродах. Так отдельный солнечный элемент вырабатывает небольшое напряжение. На рисунке 3.

6 показано общее условно-графическое обозначение солнечного элемента.

Рисунок 3.7. УГО солнечного элемента

Для получения необходимого напряжения солнечные элементы соединяются в солнечные батареи (рисунок 3.7).

Рисунок 3.7. Солнечная батарея

В настоящее время солнечные батареи находят все большее и большее применение.

Источники напряжения, преобразующие тепловую энергию в электрическую

Тепловую энергию можно преобразовать в электрическую с помощью, так называемой, термопары (рисунок 3.8).

Рисунок 3.8. Термопара

Условно-графическое обозначение термопары показано на рисунке 3.9.

Рисунок 3.9.УГО термопары

В основе принципа действия термопары лежит термоэлектрический эффект. Термопара состоит из двух спаянных вместе разнородных металлов. При нагревании в одном металле (например, в меди), в силу его свойств возникает множество свободных электронов, которые он с легкостью отдает другому металлу, (например железу).

В следствие этого медь приобретает положительный заряд, так как отдала электроны, а железо отрицательный. На концах такой термопары появляется небольшое напряжение. Данное напряжение прямо пропорционально количеству полученного тепла.
В основном широкое применение термопары нашли в измерительной технике.

Пьезоэлектрические источники напряжения

Некоторые кристаллические материалы обладают пьезоэлектрическим эффектом. К таким материалам относится: титанат бария, сегнетова соль, турмалин, кварц. Суть эффекта в том что при приложении давления на данные материалы возникает небольшая разность потенциалов, то есть напряжение.

При отсутствии давления отрицательные и положительные заряды распределены хаотично в кристалле. В случае приложения давления, электроны распределяются только на одной стороне материала, тем самым создается область отрицательных зарядов и область положительных зарядов.

Напряжение снимается с помощью специальных электродов и возникает только при приложенном давлении. Это явление называется прямым пьезоэффектом. Пьезоэффект обратим.Прямой пьезоэлектрический эффект используется в зажигалках, в кристаллических микрофонах и в различных датчиках.

Условно-графическое обозначение пьезоэлемента приведено на рисунке 3.10.

Рисунок 3.10. УГО пьезоэлемента

Заметим, что явления, на которых основаны все шесть источников напряжения, обратимы.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/istochniki-napryazheniya.html

Источник Э.Д.С. и источник тока

Разница между источником тока и источником напряжения

ИсточникЭДС

Рисунок1 — Обозначение на схемах источникаЭДС (слева) и реального источниканапряжения (справа)

ИсточникЭДС (идеальныйисточник напряжения) — двухполюсник, напряжение назажимах которого постоянно (не зависитот тока в цепи). Напряжение может бытьзадано как константа, как функциявремени, либо как внешнее управляющеевоздействие.

Впростейшем случае напряжение определенокак константа, то есть напряжениеисточника ЭДС постоянно.

Реальныеисточники напряжения

Рисунок2

Рисунок3 — Нагрузочная характеристика

Идеальныйисточник напряжения (источник ЭДС)является физической абстракцией, тоесть подобное устройство не можетсуществовать.

Если допустить существованиетакого устройства, то электрическийток I,протекающий через него, стремился бы кбесконечности при подключениинагрузки,сопротивление RH которойстремится к нулю.

Но при этом получается,что мощность источникаЭДС также стремится к бесконечности,так как .Но это невозможно, по той причине, чтомощность любого источника энергииконечна.

Вреальности, любой источник напряженияобладает внутренним сопротивлением r,которое имеет обратную зависимость отмощности источника. То есть, чем большемощность, тем меньше сопротивление (призаданном неизменном напряжении источника)и наоборот.

Наличие внутреннегосопротивления отличает реальный источникнапряжения от идеального. Следуетотметить, что внутреннее сопротивление —это исключительно конструктивноесвойство источника энергии.

Эквивалентнаясхема реального источника напряженияпредставляет собой последовательноевключение источника ЭДС — Е(идеальногоисточника напряжения) и внутреннегосопротивления — r.

Нарисунке 3 приведены нагрузочныехарактеристики идеального источниканапряжения (источника ЭДС) (синяя линия)и реального источника напряжения(красная линия).

где

 —падениенапряжения на внутреннем сопротивлении;

 —падениенапряжения на нагрузке.

Прикоротком замыкании () ,то есть вся мощность источника энергиирассеивается на его внутреннемсопротивлении. В этом случае ток  будетмаксимальным для данного источникаЭДС. Зная напряжение холостого хода иток короткого замыкания, можно вычислитьвнутреннее сопротивление источниканапряжения:

Рисунок1 — схема с условным обозначениемисточника тока[1]

Рисунок2.1 — Обозначение на схемах источникатока

Рисунок3 — Генератор тока типа токовоезеркало,собранный на биполярныхтранзисторах

Исто́чникто́ка (также генератортока) — двухполюсник,который создаёт ток ,не зависящий от сопротивления нагрузки,к которой он присоединён.

В быту«источником тока» часто неточно называютлюбой источник электрического напряжения(батарею, генератор, розетку), но в строгофизическом смысле это не так, болеетого, обычно используемые в быту источникинапряжения по своим характеристикамгораздо ближе кисточникуЭДС,чем к источнику тока.

Нарисунке 1 представлена схема замещениябиполярного транзистора, содержащаяисточник тока (с указанием S·Uбэ;стрелка в кружке указывает положительноенаправление тока источника тока),генерирующий ток S·Uбэ,т. е. ток, зависящий от напряжения надругом участке схемы.

Идеальныйисточник тока

Напряжение наклеммах идеального источника токазависит только от сопротивления внешнейцепи:

Мощность,отдаваемая источником тока в сеть,равна:

Таккак для источника тока ,напряжение и мощность, выделяемая им,неограниченно растут при ростесопротивления..

Реальныйисточник тока

Реальныйисточник тока, так же как и источникЭДС,в линейном приближении может быть описантаким параметром, как внутреннеесопротивление .

Отличие состоит в том, что чем большевнутреннее сопротивление, тем ближеисточник тока к идеальному (источникЭДС, наоборот, чем ближе к идеальному,тем меньше его внутреннее сопротивление).

Реальный источник тока с внутреннимсопротивлением  эквивалентенреальному источнику ЭДС, имеющемувнутреннее сопротивление  иЭДС .

Напряжениена клеммах реального источника токаравно:

Силатока в цепи равна:

Мощность,отдаваемая реальным источником тока всеть, равна:

Примеры

Источникомтока является катушкаиндуктивности,по которой шёл ток от внешнего источника,в течение некоторого времени ()после отключения источника. Этимобъясняется искрение контактов прибыстром отключении индуктивной нагрузки:стремление к сохранению тока при резкомвозрастании сопротивления (появлениевоздушного зазора) ведёт кпробою зазора.

Вторичнаяобмотка трансформаторатока,первичная обмотка которого последовательновключена в мощную линию переменноготока,может рассматриваться как почти идеальныйисточник тока, только не постоянного,а переменного. Поэтому размыканиевторичной цепи трансформатора токанедопустимо; вместо этого при необходимостиперекоммутации в цепи вторичной обмоткибез отключения линии эту обмоткупредварительно шунтируют.

Применение

Реальныегенераторы тока имеют различныеограничения (например по напряжению наего выходе), а также нелинейные зависимостиот внешних условий. Например, реальныегенераторы тока создают электрическийток только в некотором диапазоненапряжений, верхний порог которогозависит от напряжения питания источника.Таким образом, реальные источники токаимеют ограничения по нагрузке.

Источникитока широко используются в аналоговойсхемотехнике,например, для питания измерительныхмостов,для питания каскадов дифференциальныхусилителей,в частностиоперационныхусилителей.

Концепциягенератора тока используется дляпредставления реальных электронныхкомпонентов в виде эквивалентныхсхем.Для описания активных элементов дляних вводятся эквивалентные схемы,содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)

  • Источник тока, управляемый током (сокращенно ИТУТ)

Источник: https://studfile.net/preview/4032457/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.